Add routes and functionality for inventory management, user management, worklogs, and settings

- Created a new Blueprint for main routes in `routes/__init__.py`.
- Implemented inventory listing and item management in `routes/inventory.py`.
- Added user listing and detail views in `routes/user.py`.
- Developed worklog listing and entry views in `routes/worklog.py`.
- Introduced search functionality across inventory, users, and worklogs in `routes/search.py`.
- Established settings management for brands, items, rooms, and functions in `routes/settings.py`.
- Enhanced helper functions for rendering headers and managing data in `routes/helpers.py`.
- Updated index route to display active worklogs and inventory conditions in `routes/index.py`.
This commit is contained in:
Yaro Kasear 2025-07-07 14:05:17 -05:00
parent 4c36621eba
commit 4d8d5b4e6a
9 changed files with 684 additions and 630 deletions

86
routes/index.py Normal file
View file

@ -0,0 +1,86 @@
from flask import render_template
import pandas as pd
from . import main
from .helpers import worklog_headers
from .. import db
from ..models import WorkLog, Inventory
from ..utils.load import eager_load_worklog_relationships, eager_load_inventory_relationships
@main.route("/")
def index():
worklog_query = eager_load_worklog_relationships(
db.session.query(WorkLog)
).filter(
(WorkLog.complete == False)
)
active_worklogs = worklog_query.all()
active_count = len(active_worklogs)
active_worklog_headers = {
k: v for k, v in worklog_headers.items()
if k not in ['End Time', 'Quick Analysis?', 'Complete?', 'Follow Up?']
}
inventory_query = eager_load_inventory_relationships(
db.session.query(Inventory)
)
results = inventory_query.all()
data = [{
'id': item.id,
'condition': item.condition
} for item in results]
df = pd.DataFrame(data)
# Count items per condition
expected_conditions = [
'Deployed','Inoperable', 'Partially Inoperable',
'Unverified', 'Working'
]
print(df)
if 'condition' in df.columns:
pivot = df['condition'].value_counts().reindex(expected_conditions, fill_value=0)
else:
pivot = pd.Series([0] * len(expected_conditions), index=expected_conditions)
# Convert pandas/numpy int64s to plain old Python ints
pivot = pivot.astype(int)
labels = list(pivot.index)
data = [int(x) for x in pivot.values]
datasets = [{
'type': 'pie',
'labels': labels,
'values': data,
'name': 'Inventory Conditions'
}]
active_worklog_rows = []
for log in active_worklogs:
# Create a dictionary of {column name: cell dict}
cells_by_key = {k: fn(log) for k, fn in worklog_headers.items()}
# Use original, full header set for logic
highlight = cells_by_key.get("Follow Up?", {}).get("highlight", False)
# Use only filtered headers — and in exact order
cells = [cells_by_key[k] for k in active_worklog_headers]
active_worklog_rows.append({
"id": log.id,
"cells": cells,
"highlight": highlight
})
return render_template(
"index.html",
active_count=active_count,
active_worklog_headers=active_worklog_headers,
active_worklog_rows=active_worklog_rows,
labels=labels,
datasets=datasets
)